
1

World Robot Olympiad – Open Category (Senior)

Team: Benedek Szakali, Anna Eszter Nyíri, Dániel Mihalik

TEAM_BAD

Hungary, Bányai Júlia Secondary Grammar School

Coach: Robert Kiss

SKYNET CITY

Global City Controlling System

2

CONTENTS

Introductory Story (Science Fiction?) ...3

Conceptual Presentation of the SkyNet System ..4

Developed Model of the SkyNet System ..6

Network Connections of NXT and EV3 Blocks in the System ...7

Swarm Intelligence Based Truck System ...8

Personal Transport Model .. 11

Trucking Model, Crane ... 13

Traffic Control, Logistic Model... 14

Solar Farm Model .. 15

Weather Station .. 17

Data Transfer Center .. 18

Wind Farm ... 19

Smart Home .. 21

Conclusion .. 23

Attachment 1 - Statistical Background of the Introductory Story 24

Attachment 2 – A Sustainable Model of Energy Use and Traffic 28

Attachment 3 – Source codes .. 30

Source Codes in Character-based Programming Language (NXC) 30

Weather Station ... 30

Wind Farm .. 31

Solar Farm ... 32

Weather Data Center (Dual NXT) .. 33

Smart Home Data Center (Dual NXT) .. 35

Smart Home I (Dual NXT) ... 36

Smart Home II (Dual NXT) ... 38

Self-Driving Car .. 39

Garage ... 41

Traffic Lamp ... 42

Source Codes in Node-based Programming Language (EV3-G) 42

Cargo Truck .. 42

Crane ... 43

Swarm Truck System ... 43

3

INTRODUCTORY STORY (SCIENCE FICTION?)

By 2050 the amount of exploitable fossil energy sources had decreased to such an extent that

there followed a serious energy crisis. This certainly did not happen all of a sudden. Some

researchers had already warned at the end of the 20th century that considering the population

growth of the planet the energy crisis would be inevitable after the peak oil.

The problem was made worse by the fact that greenhouse gases produced by burning fossil

energy resources had got into the air thus raising the average temperature of the atmosphere. At

first reaching the symbolic 2 degrees Celsius (increase of average temperature compared to that

of the beginning of the industrial revolution) was considered ideal. That seemed to be

maintainable until the 2020s but politicians and economic policy reacted too late. True, they

introduced restrictive measures concerning CO2 emissions. Emissions trade was an economic

idea (CO2 quota); however, as long as a country or a company had their financial means, it was

difficult to restrain them or to motivate them to introduce more efficient environmentally-

conscious methods.

They saw the solution in the increase of the ratio of renewable energy resources. There were

agreements with deadlines which prescribed the increase of ratios. By reshuffling money spent

on researches there were serious efforts made to increase the efficiency of converting solar

energy into electrical power. Brave estimates had envisaged 60% efficiency of solar power

conversion but financial sources for research were scarce. Some of the developed industrialized

countries were slow to realize the forthcoming dangers.

Explosion of population brought along energy crisis. There appeared a huge gap between

developed and developing countries as to energy, food and drinking water supplies. Diseases,

epidemics, malnutrition and poverty did not only lead to economic and political conflicts but

they also resulted in slowing down population growth: the planet’s capacities being an obstacle

to the growth of population like a saturation curve but at the same time aggravating local and

global conflicts.

By 2048 world population had reached 9 billion, 80% of whom lived in Asian and African

countries. 50% of the planet’s population did not have access to clear drinking water and never

saw a mobile phone.

Of course research and development continued. Bigger than ever groups of scientists worked

on developing more efficient methods of producing energy. From the 2010s financial resources

grew amply. Reducing energy use became an important factor in every invention’s case. The

notion of sustainable development became part of the educational curriculum of developed

countries. The young generation of that period could already speak about the problem and saw

its components. All that gave hope concerning the future of the planet.

They started to connect the results of different science fields from the 2040s so as to implement

a system that could handle and solve the crisis effectively. Linking technological advances into

a system was made possible by the development of information technology. Standard handling

of distinct control systems required such great capacities that it would have been impossible

under human control. They introduced control centers based on artificial intelligence capable

of overviewing and controlling a whole city autonomously. Towns with a population of a couple

of a hundred thousand became ideal subjects for optimizing energy use. Towns bigger than that

showed too much of an energy-wasting scheme, while it was not economical enough to work a

system like that in case of towns with fewer people. People started to move from big cities to

smaller residential areas. Towns where people can live in and the SkyNet systems appeared.

The ideas and new methods worked so the planet was saved from the dangers imminent in 2017.

…

Statistics the introductory story is based on and a summary of today’s facts can be found

in Attachments 1 and 2.

4

CONCEPTUAL PRESENTATION OF THE SKYNET SYSTEM

The system below is a conceptual outline of the envisioned intelligent and energy-saving city.

The created working model is shown in the following chapter.

Our conception is that the governance of a city is controlled by AIs (artificial intelligences) that

operate computer systems completely autonomously. They collect and store data, they send

controlling signals to the units and they make decisions based on data analysis - bearing in mind

human safety as the most important factor (corresponding to Isaac Asimov’s laws of robotics)

and using energy sources more efficiently and more environmentally friendly. Of course not

every system can be controlled by algorithms but for most of them computer control is viable.

Each subsystem is controlled by a Slave AI while the whole system is coordinated by a Master

AI.

The system makes use of the option of exclusion of AIs that is if someone wants to leave the

network for personal reasons, they can do so provided they do not risk others’ safety. (This

fourth principle is an addition to Isaac Asimov’s principles.)

The diagram above is an outline of a system scheme. The diagram is not complete: it only shows

the most important systems that we also created in our model.

Arrows in the diagram represent two-way communication. Data as well as controlling signals

run in the network. In case of a real system it is advisable to use a Wi-Fi connection because of

the numerous related elements. We used Bluetooth technology, landline and infrared

connection in our model.

If the system starts to work in reality, safety will be a very important issue. As there are data

and control signals running in the system, it is crucial to protect it from outside access. It is

necessary to restrict computer access to data for the sake of personal security. The hierarchic

build-up of shared data bases appears complicated but it is essential to restrict the system so

that each AI has access only to data necessary to make decisions.

This system would be capable of controlling the entire working of a city a lot more

economically compared to today. Cost-effectiveness and energy saving would be results of

Master

AI

Slave AI

Transport, logistic

subsystem

Slave AI

Energy management

subsystem

Personal

transport
Trucking

Slave AI

Electricity

subsystem

Individual sun

collectors

Solar farm Wind farm

Smart

Home

Weather

station

Traffic

signal system

network

5

reducing costs with the help of Smart Home technology as opposed to wasting energy

management by households due to individual regulation. Information to operate the

heating/cooling systems, doors and windows of houses is provided by actual data collected from

a weather station. We measure the intensity of solar radiation, the strength and direction of

wind, temperature, air pressure and precipitation. Data get to the decision-making system online

so the systems of the house can be controlled by sensors on the basis of data from the center.

There are further possibilities of automation in traffic. Electricity-driven cars are run by robot

pilots. Passengers only have to give the coordinates of their destination and the car will

automatically take them there. Traffic control is automatic too as the signaling system

communicates with the robot pilot.

In case of goods transport truck convoys piloted by robots based on the principle of swarm

intelligence save fuel by keeping an ideal distance. When trucks approach the town, a Master

AI takes control over the convoy and leads the trucks safely to the unloading site in town traffic.

The entire energy production of the city is supplied by solar farms and wind farms

(corresponding to geographical and climate conditions).

Solar panels suitable for producing further electricity, which can be directed or put in safety

according to the data of the weather station, are placed on houses and public buildings. A house

with such solar panels can produce enough electricity to recharge an electric car. In case of

overproduction excess electricity can be diverted to the electricity network of the city.

In reality computer control is necessary for comprehensive, safe and efficient operation. The

system can be automated but there are a lot of issues to work on before implementation. A few

of these at present:

- Developing an AI program capable of controlling this complicated system.

- Development of legislation as background to the working of automated systems.

- Creating infrastructure (e.g. traffic signaling system, smart home technology, grey water

collecting system, solar and wind farms to produce electricity).

- Increasing efficiency of solar panels.

- Retraining human resources required by demands in computer control.

- …

6

DEVELOPED MODEL OF THE SKYNET SYSTEM

7

NETWORK CONNECTIONS OF NXT AND EV3 BLOCKS IN THE SYSTEM

In the developed system NXT and EV3 blocks together create the units connected to one

another. The subsystems communicate with one another with the help of Bluetooth, landline

connection or their sensors. The diagram below shows this network.

The system comprises 14 blocks altogether. Next to the blocks there are lists of corresponding

connected sensors and motors. The construction is made up of altogether 27 motors (middle or

large), 9 ultrasonic sensors, 10 color/light sensors, 3 compass sensors, 2 solar panels, 4 infrared

transceivers and 3 infrared seekers.

The NXT and EV3 systems are capable of communicating with each other only via a bridge

(e.g. mobile application). This idea was not implemented in the model as recoding was too slow

and reaction time too long.

Truck 1

(master)

Truck 2

(slave)

Truck 3

(slave)

Személyautó

(master)

Signal system

(slave)

Garage

(slave)

Solar farm

Crane

Weather
station

(slave)

Wind farm

(master) Bluetooth connection

Sensor connection (e.g.: infra)

Cabel connection

Smart Home I
(slave)

Smart Home II

Data
center I

(master)

Data

center II

(slave)

1 barometer

1 color sensor

1 compass sensor

1 motor

1 compass sensor

2 motors

2 light sensors

2 solar panels

1 light sensor

4 motors

1 ultrasonic sensor

1 infrared transmitter

2 motors

1 ultrasonic sensor

2 color sensors

2 motors

1 ultrasonic sensor

Per truck:

2 ultrasonic sensors

3 motors

1 infrared transreceiver

1 infrared seeker

1 light sensor

1 compass sensor

1 motor

3 color sensors

3 motors
3 motors

8

SWARM INTELLIGENCE BASED TRUCK SYSTEM

The model includes a swarm truck system in which trucks can follow the one in front of them

automatically, without human intervention thus creating swarms similar to the road trains

common in Australia. Because it is not possible to have a human driver, we operate the first

truck by remote control. While developing the trucks we tried to create as realistic ones as

possible, so the constructions we

made have robust steering

systems. The rear axles B and C

are responsible for driving. The

chassis are identical, only the

colors of cabs and spare parts are

different. Electronic control is

provided for by a LEGO

MINDSTORMS EV3 set, two

large motors are responsible for

driving and the steering system

is controlled by a middle motor.

Each truck is equipped with two

ultrasonic distance sensors, one

infrared sensor and also one

infrared transmitter at the back.

Such a transmitter is used for

remote control of trucks.

An infrared remote control

controls the robot leading the

swarm. This makes it possible to

control speed and steering. The other trucks in the swarm primarily rely on the data obtained

by their sensors. The two ultrasonic sensors measure the distance from and the infrared sensor

detects the direction of the truck ahead. The robot determines the necessary speed based on the

distance, and controls steering based on the direction given by the ultrasonic transmitter. It

receives data necessary for precise control from connections to other robots.

Adapting to EV3 robot capabilities, the model is based on Bluetooth communication. (The

robot’s system makes only master-slave based communication possible.)

Each robot communicates only with

the truck in front and at the back which

means that communication is fast:

signals do not need intermediary

transmitters and there is less risk of

communication problems. This also

makes it possible for a truck to join the

convoy on the way because it only has

to connect to two trucks. In addition,

there is no risk of losing an important

communication center: because there

are no irreplaceable centers, there are no fatal errors. In our case communication has two

important roles: it synchronizes the speeds of the trucks and informs the trucks about the

situation of others.

Truck 1 Truck 2 Truck 3

Speed

Location

Speed

Location

9

Every robot starting from the first one sends its speed to the following one which determines

its own speed compared to that. If a truck is too close to the one ahead according to the data

given by the distance sensor, it adjusts its speed to lower, if too far, then to higher respectively.

There might be problems: if the infrared sensor loses the signal of the truck ahead, it sends a

Stop request to it via Bluetooth. Then it will stop to wait for the lost one and sends on the signal

to the following in front which means if one falls behind, the whole convoy will wait for it.

It is not possible to show the code in this document because of its size. It includes 7 My Blocks

altogether. The picture below shows the project picture of the master and slave program and

also the list of My Blocks.

10

Master program:

Slave program:

11

When the trucks get to a city, their control is taken over by the corresponding AI. In the model

they wait outside the city and when they get the signal, they move on to the crane (following

its infrared signal). Prior to that a calibration program straightens the truck’s wheels and then it

moves on following the crane’s infrared signal. When it arrives at the crane, it stops and waits

for its cargo to be unloaded. As passenger cars give way to trucks at the crossroads, it can travel

without stopping.

After unloading it can join the convoy again and start for a new destination (this stage is not

part of our project).

PERSONAL TRANSPORT MODEL

There is a car controlled by an NXT robot running on a track-based road in the model. The

direction is shown by a grey lane, in the middle of which there is a 2cm white line. The

important orientation points are represented by cross-shaped white lines. One is in front of the

garage, another one is on two sides of the crossroads and a third one is at the end of the route.

The program was written using character-based NXC language.

The car follows the white line with one of its

two light sensors (S2), while the other senses

the orientation points. For following we

determine a threshold global variable: the value

below it is for the color of the road, the one

above is for the white line. The variables

speedHigh and speedLow determine the speeds

of the two motors, which are different. If the

light sensor senses white, then motor B rotates

quicker, otherwise motor C. Thus the car

follows the edge of the white line snaking

along. This is handled by the follow() function in the program

The car follows the line until its light sensor on the left senses white (S1), when the car stops

and then it acts depending on its position.

void follow(){

 while(Sensor(S1) < treshold){

 if(Sensor(S2) > treshold){

 OnFwd(OUT_B, speedHigh);

 OnFwd(OUT_C, speedLow);

 }else{

 OnFwd(OUT_C, speedHigh);

 OnFwd(OUT_B, speedLow);

 }

 NumOut(0, 0, Sensor(S1), true);

 }

 Off(OUT_BC);

}

12

 If it is at the orientation point in front of

the garage, it sends via Bluetooth a

message to open the garage, and after

moving in to close the door.

In the garage it gets onto a turntable

which getting a Bluetooth message turns

180 degrees and so rotates the car

opposite the door, which this way can

move into and out of the garage without

reverse mode.

 If the car reaches the crossroads, it connects

to the signaling system and asks for its status

through Bluetooth. If the value is 1, it carries

on moving, if 0, it stops. The signal system

observes the traffic at the crossroads and if

there is a vehicle approaching from the

crossing direction, it sends a stop signal (0).

The car continues asking for data until it gets

a signal to start: then it moves on for a period of time given in milliseconds shown in the variable

ms to get across the crossing safely. The code is contained in the waitForTheLamp() function.

So the car communicates with the NXT block of the traffic lights and the garage via Bluetooth.

In this relation the car is the master and automatically builds connections with the two slaves

when starting the program.

In the main()function of the algorithm controlling the car one can only find the timed function

calls and the turn at the end of the route. (See Attachment 3)

void waitForTheLamp(int ms) {

 temp = 0;

 while(temp == 0){

 ReceiveRemoteNumber(1,true,temp);

 }

 RotateMotor(OUT_BC,50,ms);

} Off(OUT_BC);

}

void intogarage() { //Into The garage

 SendRemoteNumber(1,1,1); //Garage open

 Wait(2017);

 RotateMotor(OUT_BC,50,1300);

 OnFwd(OUT_BC,-50);

 Wait(100);

 Off(OUT_BC);

 SendRemoteNumber(1,1,1); //Garage close

 Wait(500);

 SendRemoteNumber(1,1,2); //Turn the car

 Wait(10000);

}

13

TRUCKING MODEL, CRANE

According to the conception of the city, automation of trucking includes directing robot

controlled trucks to their destination as well as unloading cargo. The latter task is completed

automatically by our crane construction. The truck follows the signal of the infrared transmitter

on the crane and stops in an adequate position. When the crane perceives this with its ultrasonic

sensor, it starts unloading the cargo. First it calibrates the position of the grabs (positioning it

to the edge of the crane), then sensing the edge of the truck with an ultrasonic sensor it grabs

the cargo and unloads it from the truck. Next it moves back to its starting position and waits for

the next truck. The truck then can move on.

14

TRAFFIC CONTROL, LOGISTIC MODEL

 The traffic in the city is controlled by a “traffic lights” system which sends continuous go or

stop signals to the cars in the crossroads. In reality timing is necessary just like in case of

present-day traffic management. However, it is not needed to send set-time go and stop signals:

depending on how busy the road is, it is

possible to let a vehicle from a certain

direction through just for a period that is

necessary for it to go through. If the crossroad

is free, the signaling system reacts

automatically when a vehicle arrives. For this

we need a monitoring system that can perceive

the arrival of vehicles. There is a crossroad in

the model. The trucks move along the main

road (as braking and starting in their case

requires more energy). So they have a

continuous go signal (this is only relevant in

the model). A car arrives on the side road and

either stops and waits or carries on moving

depending on the signal it receives from the signaling system.

The program of the signaling system was written in simple character-based NXC language. The

gate observes the main road with an ultrasonic sensor. If a truck arrives, it sends signal 0 through

Bluetooth, otherwise signal 1. The car, perceiving this, either waits or goes on. The program

runs in an infinite loop so signal sending is continuous.

task main(){

 SetSensorLowspeed(S2);

//Truck distance from the crossroad

 int distance = 30;

 while(true){

 if(SensorUS(S2) < distance){

 SendResponseNumber(1,0);

 NumOut(0,0,0,true);

 }else{

 SendResponseNumber(1,1);

 NumOut(0,0,1,false);

 }

 NumOut(0,10,SensorUS(S2),false);

 Wait(300);

 }

}

15

SOLAR FARM MODEL

 We simulate conversion of solar energy into electricity with the model of a solar farm. The

unit makes use of an NXT central element. Two solar panels follow the sun’s movement both

vertically and horizontally. When starting

it finds south with the help of a compass

sensor and adjusts the solar panels

corresponding the orientation. After that

according to the principle of real sun

following solar panels it always turns the

panels in the brightest direction so as to

produce energy in the most efficient

possible way. It works like this: there is a

light sensor on both sides of a vertical

panel, one of which is in shade during the

sun’s movement and the two sensors

measure different light intensity.

The algorithm turns the

construction towards the brighter

sensor until the two values are the

same again. In reality solar panels

do not need to be turned around

completely as the sun’s virtual

movement in the sky only

happens in a limited range.

In different months the sun is at different heights above the horizon. Our model is capable of

adapting to this as the most efficient setting is when sunrays reach the panels perpendicularly.

To save energy we change the gradient of the panels monthly. In the model one month is 5

seconds. The calculated gradient values are optimized for Costa Rica.

while (true){ //Follow the light

 LeftLight=Sensor(IN_2);

 RightLight=Sensor(IN_3);

 if (abs(LeftLight-RightLight)>3){

 if (LeftLight>RightLight){

 OnFwd(OUT_C,-50);

 }

 else{

 OnFwd(OUT_C,50);

 }

 }

 else{

 Off(OUT_C);

 }

 }}

16

Costa Rica, San José

Time zone: GMT -6

Longitude: 09° 55’ 30” N

Latitude: 084° 05’ 00” W

The two-axle rotation of the structure is ensured by two motors. East-west rotation is done by

rotation round a fixed axle, while adjusting the gradients of the panels is helped by cogs.

task SunDirection(){ //Tilt of Solar panel

 int i=0, direction=1, Month=5000;

 while (true){

 RotateMotor(OUT_A,direction*20,14);

 Wait(Month);

 i++;

 if (i==6){

 direction*=-1;

 i=0;

 }

 }

}

17

WEATHER STATION

 The weather station is to measure different parameters of weather, which

provides data for the smart home to automatically control its

heating/cooling system and the working of its windows and doors and

electric light sources. The data get to a data transfer center which sends the

relevant data to the different subsystems of the model via Bluetooth.

 There are four sensors at the station. A barometric sensor measures the

temperature and air pressure. A light sensor measures the light in the

surroundings to decide whether it is day or night, whether it is cloudy or sunny. The

weathervane on the

construction can define the

direction of the wind with

the help of a color sensor.

Sensing the move of the

vane the construction rotates

in the direction of the wind;

the precise direction is

measured with a compass

sensor that is also used e.g.

for turning the windmill in

the wind’s direction through

the data transfer center.

The weather station collects

the measured data into a

string, thus being able to

send all of it in one step via

Bluetooth. The target

while (true){

 ReadSensorHTBarometric(IN_3, temp, press);

 temp/=10; //Temperature

 press*=0.0254; //Press

 do { //Direction

 direction1=SensorHTCompass(IN_1);

 Wait(300);

 direction2=SensorHTCompass(IN_1);

 Wait(300);

 } while (direction1!=direction2);

 if (direction1<10)

 dirstr="00"+NumToStr(direction1);

 else if (direction1<100)

 dir="0"+NumToStr(direction1);

 else dir=NumToStr(direction1);

 light=Sensor(IN_2); //Light

 if (light<10)

 lightstr="0"+NumToStr(light);

 else

 lightstr=NumToStr(light);

 message=NumToStr(temp)+NumToStr(press)+dir+lig;

 if (Sensor(IN_4)!=6) Rotate();

 }

18

computer receives the string, and cutting and converting it, the computer gets the data.

Moving the construction happens by using a train attached to a fixed axle. Thus it is possible

for the construction to turn around without the frame’s movement or the cables getting tangled.

 The weathervane is a construction attached to the frame, which

can easily turn. It can be moved by wind and the construction

turns into the direction with the smallest resistance which

corresponds to the direction of the wind. A color sensor perceives

this move, and the whole structure is rotated respectively.

The weather station is a slave in the Bluetooth network, while the wind farm is the master.

DATA TRANSFER CENTER

 The data transfer center consists of two NXT bricks

connected at I2C ports. The so-called dual NXTs are capable

of connecting two Bluetooth-based subsystems. Both bricks

can connect to three further NXTs; thanks to the cable

connections between them, all the three Bluetooth

connections remain free, thus making it possible to create a

system of up to eight

bricks. One brick of the

data transfer center

connects as a slave to the wind farm (which is the master),

and through that to the weather station. The data transfer

center gets the text message including the value of wind

speed added by the wind farm to the data it received from the

weather station. The center displays the data on the screen

and also sends it to the connected other NXT through the I2C

port. This second brick as a master makes up another

subsystem which is in connection with the smart home and

sends data to it.

19

The data on the screen is updated every half second. Converting text data and showing it on the

screen happens e.g. in case of wind according to the following code:

In case of other data the code is similar but the data can be found at a different place of the

string, so the substring can be obtained from the text with other parameters.

WIND FARM

The wind farm is the master robot of the data collecting subsystem. When starting it

automatically attaches the weather station and one of the data transfer center’s bricks to the

network. It can rotate around a fixed axle so that its blades are always in the actual direction of

the wind. It receives the direction of the wind from the weather station and it uses a compass

sensor to define the direction.

It has a light sensor to measure wind. It adds the measured value to the data received from the

weather station and sends the data to the data collecting center via Bluetooth. It measures the

value of strength of the wind in rpm (rotations per minute).

TextOut(0,32,"Wind pow.: ",0); //wind power

rpm=StrToNum(SubStr(message,10,1));

NumOut(60,32,rpm*20,0);

TextOut(80,32,"rpm",0);

20

 So a light sensor measures the wind.

The blades of the windmill are white

and they rotate in front of a black

surface. When the wind blows, the

light sensor perceives the variation of

black and white colors, while in case

of no wind this value is constantly the

same (either white or black). The

variation speed of the measured value

is used by the program to create an

rpm value which is in proportion with

the speed of rotation. This value is

added to the end of the data string

received from the weather station and

is sent to the data transfer center.

On top of the wind farm there is a led string which flashes continuously. In a real situation this

informs air traffic of an actual height.

while(true){

 NumOut(0,50,rpm,0);

 if (rpm!=old){

 old=rpm;

 }

 if (rpm==0) old=-1;

 whitecount = 0;

 kezd = CurrentTick();

 while(CurrentTick() - kezd < 500){

 if(Sensor(IN_1) < 50 && isOnWhite){

 isOnWhite = false;

 }

 if(Sensor(IN_1) > 50 && !isOnWhite){

 isOnWhite = true;

 whitecount++;

 }

 }

 rpm = whitecount;

 }

21

SMART HOME

The central unit of the smart home consists of two NXT bricks which are connected with cables

via I2C ports. One brick connects as a slave to the data transfer system from which it gets the

data collected by the weather station.

What is new about this system is that in case of implementation at city level the smart homes

have access to a single data system so there is no need for individual measuring solutions. The

data provided by the weather station will serve as basis for working.

The house can open and close its windows and doors and also control its heating-cooling

system. The cooling system is represented by a ventilator while heating is modelled by color

sensors placed outside the house. Red light means high, green normal and blue low temperature.

Of course in reality all this can be replaced by air-conditioning. Lights are modelled by the led

string on the house. There are solar panels on the roof which in a real situation provide energy

enough to recharge an electric car. The solar panels are rotatable so in sunny weather they can

produce energy, but in dark or in stormy weather they can be rotated to face their surroundings

with a surface that prevents the leaking of heat.

22

So the working of the systems of the house is influenced by temperature, wind, and the intensity

of sunshine. There is part of a code below demonstrating the reaction of the house to different

values.

The msg string contains data referring to wind, temperature and light. If the first character is 2,

there is no wind, if it is 1, there is. If the second character is 1, it is hot, if it is 2, it is cold and

if it is 9, the temperature is normal. If the third character is 1, it is dark, otherwise it is light.

The windows and doors work as the code above shows: if the wind blows (1), they are closed,

if it does not blow but it is hot (1), they are also closed (as the air-conditioner turns on). By

changing the values that are arranged like in a matrix, it is possible to customize the working

of the systems of the house, based on the received data.

The picture shows a part of the

code responsible for opening and

closing the windows. The wstate

logical variable contains the actual

position of the window as working

the motors used for opening-

closing depends on whether the

window is actually open or closed.

The second brick of the smart home controls the solar panels on the roof and the lights. It was

necessary to involve an NXT robot because of the large number of motors.

The automated functions of the house can be further developed by supplementing the sensor set

of the weather station, e.g. with a rain sensor. We could produce a rain sensor by using the

technique applied with the windscreen of a car, or the idea that light reflects from a wet glass

surface in a different way than from a dry surface.

void Operation(string msg) {

 switch(msg) {

 //Wind-Temp-Light window-roof-heatleds-fan heatled: 1-red; 2-green; 3-blue

 case "111" : OnOff(0,0,1,1); break;

 case "112" : OnOff(0,1,1,1); break;

 case "121" : OnOff(0,0,3,0); break;

 case "122" : OnOff(0,1,3,0); break;

 case "191" : OnOff(0,0,2,0); break;

 case "192" : OnOff(0,1,2,0); break;

 case "211" : OnOff(0,0,1,1); break;

 case "212" : OnOff(0,1,1,1); break;

 case "221" : OnOff(1,0,3,0); break;

 case "222" : OnOff(1,1,3,0); break;

 case "291" : OnOff(1,0,2,0); break;

 case "292" : OnOff(1,1,2,0); break;

 }

}

//window

 if(window!=wstate) {

 if(wstate==1){ //close

 OnFwd(OUT_A,-50); Wait(500); Off(OUT_A);

 wstate=1;

 }

 else { //open

 OnFwd(OUT_A,50); Wait(500); Off(OUT_A);

 wstate=0;

 }

 }

23

CONCLUSION

The modelled system works. This supports the idea that a global city controlling system can be

implemented in reality too: a system which handles constructions that can be automated in an

algorithmic and single way. All this is not solely for the purpose of comfort in terms of e.g.

self-driven cars or smart homes, but it can also result in saving energy thanks to the central

sources (for instance data collected and handled in a single way) used instead of numerous

individual solutions. A further advantage of this system is its cost-effectiveness which does not

only make smart homes and environmentally friendly cars available for everyone but also

sustainable.

Renewable energy sources can primarily be used efficiently in case of electricity. True, solar

panels are not really efficient yet and it is not so simple to store electricity as fossil energy

sources. Tendencies show though that the future is electricity. And automated truck convoys

have already proved to be able to reduce energy consumption.

24

ATTACHMENT 1 - STATISTICAL BACKGROUND OF THE INTRODUCTORY STORY

Electricity
and

heating
25%

Agricultur
e, forestry
and land

use
24%Industry

21%

Transport
ation
14%

Other
energy

10%

Buildings
6%

Global greenhouse gas emissions by
economic sector

Heating
75%

Hygiene
11%

Cooking
7%

Electronics
3%

Air-
conditioning

2% Lighting
1%

Washing
1%

Residential energy usage

0

10

20

30

40

50

60

70

80

90

1940 1950 1960 1970 1980 1990 2000 2010 2020 2030

million barrels
per day

Peak oil

Middle East Africa Latin America

South Asia East Asia China

Temporary economies Oceania Europe

North America

25

0

2

4

6

8

10

12

1950 1960 1970 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

billion people World population

Africa Asia Europe

North America Central and South America Australia and Oceania

375

380

385

390

395

400

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

particles per
million

Carbon-dioxide concentration

26

-10

-8

-6

-4

-2

0

2

4

-145 -125 -115 -101 -93 -87 -80 -75 -67 -54 -45 -33 -23 -14 -7 -2

˚C

Thousand years

Average temperature

27

Data sources:

http://fna.hu/vilagfigyelo/olajcsucs

http://fna.hu/vilagfigyelo/eghajlatvaltozas

https://www.ksh.hu/interaktiv/grafikonok/vilag_nepessege.html

https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data

http://kkft.bme.hu/sites/default/files

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1990 1995 2000 2005

GWh

Distribution of gross electricity production in Hungary

Coal Hydrocarbon Renewable Total

28

ATTACHMENT 2 – A SUSTAINABLE MODEL OF ENERGY USE AND TRAFFIC

The sustainable town model demonstrates a community working in a lot more environmentally-

friendly and cost-effective way compared to traditional towns. The aim of creating such a city

is to protect our planet, to use our energy resources efficiently, to make our society more

environment-conscious and to minimize expenses. There are several ways to reach these goals

but by all means we have to make alterations in cities and form a system capable of handling

the problems arising while controlling the town and of processing and making use of the

incoming data. Let’s automate traffic (both public and personal transport) and freight transport,

let’s build Smart Homes and let’s provide for energy use with renewable and sustainable

resources instead of traditional energy sources!

In an ideal town vehicles are electric and hybrid and also self-driving. They are not widely-

spread yet but they are legal to use in e.g. two US states. There is a great need for them as traffic

is responsible for 17% of air pollution. There are quite a few misconceptions about these cars

regarding fuel consumption, bearing capacity and working life. Reality and experience show,

though, that electric cars can run 120-130 km on average after refill, and the best Tesla-made

cars can even go as far as 300-400 km. Surveys show that because in these cars there are a lot

fewer spare parts that tend to go wrong, they are in a much better condition after a few years’

use than cars with internal combustion engines. Some say that electric cars are not

environmental-friendly as producing batteries causes more pollution but this argument has little

truth in it: these batteries do not emit any harmful gases and also lithium-ion batteries are

comparatively environment-friendly. Among the major advantages of these vehicles is that they

can accelerate surprisingly fast, that they recharge brake energy into the battery and also they

have great turning stability thanks to their low center of gravity. A common problem is that

they are very expensive, though it has dropped to 8 million HUF on average, and that many buy

a second-hand car. As a result of different reductions and free recharges, it takes only about

five years to recover the price of the car. Although there are free charging stations in quite a

few towns by now (in Budapest 50 at present), these cars can be recharged at home with the

help of a household plug. Recharging usually takes about 6 to 8 hours (depending on the type

of the charger and the extent of charging) but there are rapid or fast chargers as well. Fast

chargers can recharge the battery to 80% in about 30 minutes. Google cars are the best-known

self-driving cars. Their development is a continuous success. There was only one accident

during the test drives and even in that case it was the driver of the other vehicle who was

responsible. However, these cars still need a driver because they are not “man-like” enough:

they can only react as robots. Human intervention is indispensable in certain situations. They

are planning to introduce completely self-driving cars in 2019. As to public transport, definite

progress would be made by direct communication between vehicles and also complete

automation. All these would lead to a considerable reduction of harmful exhaust emissions and

at the same time we could save energy.

Trucking is a great challenge even for big companies. The expenses are high, there is a risk for

goods to be damaged and also trucks can get involved in accidents. Fuel-loss is an even bigger

problem than those mentioned before. That is why trucks often travel in convoys: they can go

faster in each other’s lee. However, this often causes accidents because the distances between

the vehicles are shorter and so the drivers have a shorter time to react. This problem too can be

solved by using robot pilots. The vehicles communicate directly and their reaction time is a lot

(circa 14 times) shorter than man’s, so there are no accidents to be feared. This method makes

transport more cost-effective, safer and environmentally friendly. Our school has already done

a research based on this idea (Smart Truck Swarm), but practice shows there are existing models

already. Mercedes has successfully experimented with sending a convoy from Stuttgart to

29

Rotterdam. The members of the group communicated with one another via Wi-Fi (Highway

Pilot Connect). They managed to shorten the distance between them to 15 meters and at the

same time the method resulted in saving 10% of fuel.

Smart Home technology means an automated technical unit of houses which cooperate to

control the systems working in the houses effectively. Controllable subsystems include

cooling/heating, operating the security system, opening and closing the doors and windows and

operating household machines as well. In respect of saving energy the most important of these

is regulating temperature. They usually use individual solutions; there is no connection to a

central system like e.g. a weather station or the neighboring buildings. The control system is

based on algorithmic principles. Systems controlled by artificial intelligence are still under

development. It was in the 1960s that the first computer-operated houses appeared: they already

worked with sensor-based program-control. Development has continued ever since and the

number of built-in controllable elements is growing all the time. They estimate the number of

apartments with smart home technology in the US will be 8 million by the end of 2017.

Solar energy as one of the renewable resources seems to be the most exploitable. Technology

is developing all the time. Exploiting solar radiation for electricity is not efficient enough yet.

Energy conversion efficiency at room temperature is around 27% but they consider efficiency

over 60% to be possible. Today’s technology is far from it but in many places around the world

solar farms are created to largely contribute to the energy supply of towns.

30

ATTACHMENT 3 – SOURCE CODES

SOURCE CODES IN CHARACTER-BASED PROGRAMMING LANGUAGE (NXC)

Weather Station

string message="";

void Rotate(){

 while (Sensor(IN_4)!=6){

 OnFwd(OUT_B,100);

 }

 Off(OUT_B);

}

task Send(){

 float x;

 while (true){

 SendResponseString(1,message);

 Wait(200);

 }

}

task main(){

 int temp, press;

 int light, direction1, direction2;

 string dirstr, lightstr;

 SetSensorColorFull(IN_4); //Wind direction measurement (weathercock)

 SetSensorLowspeed(IN_3); //Compass sensor

 SetSensorLight(IN_2); //Day-Night sensor

 SetSensorLowspeed(IN_1); //Barometric sensor

 SetSensorType(IN_2,IN_TYPE_LIGHT_INACTIVE);

 StartTask(Send);

 while (true){

 ReadSensorHTBarometric(IN_3, temp, press);

 temp/=10; //Temperature

 press*=0.0254; //Press

 do { //Direction

 direction1=SensorHTCompass(IN_1);

 Wait(300);

 direction2=SensorHTCompass(IN_1);

 Wait(300);

 } while (direction1!=direction2);

 if (direction1<10)

 dirstr="00"+NumToStr(direction1);

 else if (direction1<100)

 dir="0"+NumToStr(direction1);

 else dir=NumToStr(direction1);

 light=Sensor(IN_2); //Light

 if (light<10)

 lightstr="0"+NumToStr(light);

 else

 lightstr=NumToStr(light);

 message=NumToStr(temp)+NumToStr(press)+dir+lig;

 if (Sensor(IN_4)!=6) Rotate();

 }

}

31

Wind Farm

int rpm=0, old=0;

string message;

void BT_fel_csatol(int x, string nev){

 CommBTConnectionType args;

 args.Name = nev;

 args.ConnectionSlot = x;

 args.Action = 1;

 SysCommBTConnection(args);

 while(BluetoothStatus(x)!=0);

}

task Communicate(){

 string received;

 while (true){

 do{

 ReceiveRemoteString(1,1,received);

 } while (received=="");

 message=received;

 message+=NumToStr(old);

 SendRemoteString(2,1,message);

 Wait(100);

 }

}

task Rotate(){

 SetSensorLowspeed(IN_2);

 int direction=0;

 int target_dir=0;

 int dir=1;

 while (true){

 target_dir=StrToNum(SubStr(message,5,3));

 target_dir = target_dir%360;

 direction=SensorHTCompass(IN_2)%360;

 if(abs((target_dir-360)-direction) < abs(target_dir-direction)){

 dir = 50;

 }else if(abs(target_dir+360)-direction < abs(target_dir-direction)){

 dir = -50;

 }else{

 if(target_dir-direction < 0){

 dir = 50;

 }else{

 dir = -50;

 }

 }

 OnFwd(OUT_B,dir);

 NumOut(0,0,target_dir,1);

 NumOut(0,10,direction,0);

 NumOut(0,20,dir,0);

 if(abs((target_dir%360)-(direction%360))>20){

 while (abs((target_dir%360)-(direction%360))>5){

 direction=SensorHTCompass(IN_2)%360;

 NumOut(0,0,target_dir,1);

 NumOut(0,10,direction,0);

 NumOut(0,20,dir,0);

 }

 }

 Off(OUT_B);

32

 Wait(100);

 }

}

task main(){

 BT_fel_csatol(1,"MetStat");

 PlayTone(440,200);

 Wait(200);

 BT_fel_csatol(2,"MetAI");

 PlayTone(440,200);

 Wait(200);

 SetSensorLight(IN_1);

 bool isOnWhite = false;

 int whitecount=0;

 long kezd;

 StartTask(Rotate);

 StartTask(Communicate);

 while(true){

 NumOut(0,50,rpm,0);

 if (rpm!=old){

 old=rpm;

 }

 if (rpm==0) old=-1;

 whitecount = 0;

 kezd = CurrentTick();

 while(CurrentTick() - kezd < 500){

 if(Sensor(IN_1) < 50 && isOnWhite){

 isOnWhite = false;

 }

 if(Sensor(IN_1) > 50 && !isOnWhite){

 isOnWhite = true;

 whitecount++;

 }

 }

 rpm = whitecount;

 }

}

Solar Farm

task SunDirection(){ //Tilt of Solar panel

 int i=0, direction=1, Month=5000;

 while (true){

 RotateMotor(OUT_A,direction*20,14);

 Wait(Month);

 i++;

 if (i==6){

 direction*=-1;

 i=0;

 }

 }

}

task LedFlash(){

 int power=0;

 while (true){

 OnFwd(OUT_B,power*10);

 Wait(500);

 power+=10;

33

 if (power==110) power=0;

 }

}

task main(){

 SetSensorLight(IN_2);

 SetSensorLight(IN_3);

 SetSensorType(IN_2,IN_TYPE_LIGHT_INACTIVE);

 SetSensorType(IN_3,IN_TYPE_LIGHT_INACTIVE);

 SetSensorLowspeed(IN_1);

 int LeftLight, RightLight, Compass;

 StartTask(SunDirection);

 StartTask(LedFlash);

 while (abs(SensorHTCompass(IN_1)-180)>2){

 OnFwd(OUT_C,60);

 NumOut(80,30,SensorHTCompass(IN_1),0);

 }

 Off(OUT_C);

 while (true){ //Follow the light

 LeftLight=Sensor(IN_2);

 RightLight=Sensor(IN_3);

 if (abs(LeftLight-RightLight)>3){

 if (LeftLight>RightLight){

 OnFwd(OUT_C,-50);

 }

 else{

 OnFwd(OUT_C,50);

 }

 }

 else{

 Off(OUT_C);

 }

 }

}

Weather Data Center (Dual NXT)

string message="32759123560";

int rpm=0;

string TextLight(int light){

 string text_light;

 if (light<20) text_light="Night";

 else if (light<50) text_light="Cloudy";

 else text_light="Sunny";

 return text_light;

}

string TextDirection(int direction){

 string text_direction;

 if (direction<23) text_direction= "South ";

 else if (direction<68) text_direction= "SouthWest";

 else if (direction<113) text_direction="West ";

 else if (direction<158) text_direction="NorthWest";

 else if (direction<203) text_direction="North ";

 else if (direction<248) text_direction="NorthEast";

 else if (direction<293) text_direction="East ";

 else if (direction<338) text_direction=

 "SouthEast";

 else text_direction="South ";

 if (rpm==0) text_direction="No wind ";

34

 return text_direction;

}

void RefreshScreen(){

 int num;

 string answer;

 TextOut(0,0,"Temp.: ",1); //temp

 TextOut(44,0,SubStr(message,0,2),0);

 CircleOut(75,5,2);

 TextOut(79,0,"C",0);

 TextOut(0,16,"Press: ",0); //press

 TextOut(38,16,SubStr(message,2,3),0);

 TextOut(75,16,"Hgmm",0);

 TextOut(0,32,"Wind pow.: ",0); //wind power

 rpm=StrToNum(SubStr(message,10,1));

 NumOut(60,32,rpm*20,0);

 TextOut(80,32,"rpm",0);

 TextOut(0,40,"Wind: ",0); //wind direction

 num=StrToNum(SubStr(message,5,3));

 answer=TextDirection(num);

 TextOut(40,40,answer,0);

 TextOut(0,56,"Light: ",0); //light

 num=StrToNum(SubStr(message,8,2));

 answer=TextLight(num);

 TextOut(38,56,answer,0);

 TextOut(75,56,"(",0);

 TextOut(80,56,SubStr(message,8,2),0);

 TextOut(92,56,")",0);

}

void SendRS485String(const string msg){

 byte mlen = ArrayLen(msg);

 SetHSOutputBuffer(0, mlen, msg);

 SetHSOutputBufferOutPtr(0);

 SetHSOutputBufferInPtr(mlen);

 SetHSState(HS_SEND_DATA);

 SetHSFlags(HS_UPDATE); //send it

}

void WaitForMessageToBeSent(){

 while(HSOutputBufferOutPtr() < HSOutputBufferInPtr())

 Wait(1);

}

task SmartHomeData(){

 SetSensorType(IN_4, SENSOR_TYPE_HIGHSPEED);

 SetHSState(HS_INITIALISE);

 SetHSFlags(HS_UPDATE);

 Wait(10);

 string HomeData;

 float temp, light;

 while (true) {

 if ((rpm*20)>=40) HomeData="1"; //Window closed

 else HomeData="2"; //Window opened

 temp=StrToNum(SubStr(message,0,2));

 if (temp>25) HomeData+="1"; //Window closed, fan on

35

 if (temp<18) HomeData+="2"; //Window closed, heating on

 if ((temp<=25) && (temp>=18)) HomeData+="9"; //Window opened, fan off,

heating off

 light=StrToNum(SubStr(message,8,2));

 if (light<20) HomeData+="1"; //Light on

 else HomeData+="2"; //Light off

 SendRS485String(HomeData);

 WaitForMessageToBeSent();

 }

}

task WindData(){

 int data;

 while (true){

 do{

 ReceiveRemoteNumber(2,1,data);

 Wait(100);

 }while (data==0);

 if (data<0) rpm=0;

 else rpm=data;

 }

}

task RefreshData(){

 long begin;

 while (true){

 begin=CurrentTick()

 while (abs(CurrentTick()-begin)<1000);

 RefreshScreen();

 }

}

task main(){

 string received;

 StartTask(WindData);

 StartTask(RefreshData);

 StartTask(SmartHomeData);

 while (true){

 do{

 ReceiveRemoteString(1,1,received);

 } while (received=="");

 message=received;

 Wait(100);

 }

}

Smart Home Data Center (Dual NXT)

string message;

void BT_fel_csatol(int x, string nev){

 CommBTConnectionType args;

 args.Name = nev; // The slave robot's name

 args.ConnectionSlot = x; // Number og the communication channel

 args.Action = 1; // 1-> connect on; 0-> connect off

 SysCommBTConnection(args);

 while(BluetoothStatus(x)!=0);

}

36

task MetAIRead(){

 byte mlen;

 SetSensorType(IN_4, SENSOR_TYPE_HIGHSPEED);

 SetHSState(HS_INITIALISE);

 SetHSFlags(HS_UPDATE); // start with empty input buffer

 SetHSInputBufferInPtr(0);

 SetHSInputBufferOutPtr(0);

 Wait(10);

 while(true){ // wait for a message to arrive

 mlen = 0;

 while (mlen == 0)

 mlen = HSInputBufferInPtr();

 GetHSInputBuffer(0, mlen, message); // read it

 SetHSInputBufferInPtr(0); // clear the incoming buffer

 }

}

task main(){

 BT_fel_csatol(1,"sHome");

 PlayTone(440,200);

 Wait(200);

 StartTask(MetAIRead);

 while (true){

 TextOut(0,0,message,1);

 SendRemoteString(1,1,message);

 Wait(100);

 }

}

Smart Home I (Dual NXT)

bool wstate=0; //window, 0=closed, 1=opened

bool fstate=0; //fan, 0=off, 1=on

bool rstate=0; //roof, 0=solar, 1=black

string message="111";

task MetData(){

 while (true){

 ReceiveRemoteString(1,0,message);

 Wait(500);

 }

}

void SendRS485String(const string msg){

 byte mlen = ArrayLen(msg);

 SetHSOutputBuffer(0, mlen, msg);

 SetHSOutputBufferOutPtr(0);

 SetHSOutputBufferInPtr(mlen);

 SetHSState(HS_SEND_DATA);

 SetHSFlags(HS_UPDATE);

}

void WaitForMessageToBeSent(){

 while(HSOutputBufferOutPtr() < HSOutputBufferInPtr())

 Wait(1);

}

task SendData(){

37

 SetSensorType(IN_4, SENSOR_TYPE_HIGHSPEED);

 SetHSState(HS_INITIALISE);

 SetHSFlags(HS_UPDATE);

 Wait(10);

 while (true){

 SendRS485String(message);

 WaitForMessageToBeSent();

 }

}

void OnOff(bool window, bool roof, int heating, bool fan) { //roof

 if(roof!=rstate) {

 RotateMotor(OUT_C,50,180);

 rstate=0;

 }

 switch (heating) { //heating leds

 case 1 : SetSensorColorRed(IN_1); SetSensorColorRed(IN_2);

SetSensorColorRed(IN_3); break; //warm

 case 2 : SetSensorColorBlue(IN_1); SetSensorColorBlue(IN_2);

SetSensorColorBlue(IN_3); break; //cold

 case 9: SetSensorColorGreen(IN_1); SetSensorColorGreen(IN_2);

SetSensorColorGreen(IN_3); break; //normal

 }

 if(fan!=fstate) { //fan

 if (fan==1) { //fan on

 OnFwd(OUT_B,50);

 fstate=1;

 }

 else { //fan off

 Off(OUT_B);

 fstate=0;

 }

 }

 if(window!=wstate) { //window

 if(wstate==1){ //close

 OnFwd(OUT_A,-50); Wait(500); Off(OUT_A);

 wstate=1;

 }

 else { //open

 OnFwd(OUT_A,50); Wait(500); Off(OUT_A);

 wstate=0;

 }

 }

}

void Operation(string msg) {

 switch(msg) {

 //Wind-Temp-Light window-roof-heatleds-fan heatled: 1-red; 2-green; 3-

blue

 case "111" : OnOff(0,0,1,1); break;

 case "112" : OnOff(0,1,1,1); break;

 case "121" : OnOff(0,0,3,0); break;

 case "122" : OnOff(0,1,3,0); break;

 case "191" : OnOff(0,0,2,0); break;

 case "192" : OnOff(0,1,2,0); break;

 case "211" : OnOff(0,0,1,1); break;

 case "212" : OnOff(0,1,1,1); break;

 case "221" : OnOff(1,0,3,0); break;

38

 case "222" : OnOff(1,1,3,0); break;

 case "291" : OnOff(1,0,2,0); break;

 case "292" : OnOff(1,1,2,0); break;

 }

}

task main(){

 StartTask(MetData);

 StartTask(SendData);

 while (true){

 TextOut(0,0,message,0);

 Operation(message);

 }

}

Smart Home II (Dual NXT)

int wind, temp, light;

int lampstate=0; //lamp, 1=turn on, 0=turn off

int nestate=0; //umbrella, 1=opened, 0=closed

string message="555";

task ReceiveData(){

 byte mlen;

 SetSensorType(IN_4, SENSOR_TYPE_HIGHSPEED);

 SetHSState(HS_INITIALISE);

 SetHSFlags(HS_UPDATE);

 SetHSInputBufferInPtr(0);

 SetHSInputBufferOutPtr(0);

 Wait(10);

 while(true){

 mlen = 0;

 while (mlen == 0)

 mlen = HSInputBufferInPtr();

 GetHSInputBuffer(0, mlen, message);

 SetHSInputBufferInPtr(0);

 }

}

void Operation(){

 int x;

 x=StrToNum(SubStr(message,0,1));

 if(x!=0){

 wind=x;

 }

 x=StrToNum(SubStr(message,1,1));

 if(x!=0){

 temp=x;

 }

 x=StrToNum(SubStr(message,2,1));

 if(x!=0){

 light=x;

 }

 if(wind==2){ //Umbrella

 if(light==2){

 if(nestate==0){

 OnFwd(OUT_C,50);

 Wait(1000);

 Off(OUT_C);

39

 OnFwd(OUT_B,50);

 Wait(500);

 Off(OUT_B);

 nestate=1;

 }

 }

 else{

 if(nestate==1){

 OnFwd(OUT_C,-50);

 Wait(1100);

 Off(OUT_C);

 nestate=0;

 }

 }

 }

 else{

 if(nestate==1){

 OnFwd(OUT_C,-50);

 Wait(1100);

 Off(OUT_C);

 nestate=0;

 }

 }

 if(light==1){ //lamp

 if(lampstate==0){

 OnFwd(OUT_A,100);

 lampstate=1;

 }

 }

 else{

 if(lampstate==1){

 Off(OUT_A);

 lampstate=0;

 }

 }

}

task main(){

 StartTask(ReceiveData);

 while(true){

 TextOut(0,24,message,0);

 Operation();

 }

}

Self-Driving Car

int treshold = 40, speedHigh=40, speedLow=25;

int temp = 0;

void BT_fel_csatol(int x, string nev){

 CommBTConnectionType args;

 args.Name = nev;

 args.ConnectionSlot = x;

 args.Action = 1;

 SysCommBTConnection(args);

 while(BluetoothStatus(x)!=0);

}

40

void follow(){

 while(Sensor(S1) < treshold){

 if(Sensor(S2) > treshold){

 OnFwd(OUT_B, speedHigh);

 OnFwd(OUT_C, speedLow);

 } else {

 OnFwd(OUT_C, speedHigh);

 OnFwd(OUT_B, speedLow);

 }

 NumOut(0, 0, Sensor(S1), true);

 }

 Off(OUT_BC);

}

void intoGarage() { //Into The garage

 SendRemoteNumber(1,1,1); //Garage open

 Wait(2017);

 RotateMotor(OUT_BC,50,1300);

 OnFwd(OUT_BC,-50);

 Wait(100);

 Off(OUT_BC);

 SendRemoteNumber(1,1,1); //Garage close

 Wait(500);

 SendRemoteNumber(1,1,2); //Turn the car

 Wait(10000);

}

void waitForTheLamp(int ms) {

 temp = 0;

 while(temp == 0){

 ReceiveRemoteNumber(1,true,temp);

 }

 RotateMotor(OUT_BC,50,ms);

}

task main(){

 SetSensorColorRed(IN_2);

 SetSensorColorRed(IN_1);

 BT_fel_csatol(1,"garazs");

 PlayTone(700, 0.1);

 Wait(500);

 BT_fel_csatol(2,"lampa");

 PlayTone(700, 0.1);

 Wait(500);

 while(true){

//Garage open

 SendRemoteNumber(1,1,1);

 Wait(2000);

 OnFwdSync(OUT_BC, 50, 0.5);

 Wait(2000);

 Off(OUT_BC);

 OnFwd(OUT_C, 40);

 OnFwd(OUT_B, 30);

 while(Sensor(IN_2) < treshold){};

 Off(OUT_BC);

 follow();

//Garage close

41

 SendRemoteNumber(1,1,1);

//Wait for the lamp (into front)

 waitForTheLamp(117);

 follow();

//Turn back

 OnFwd(OUT_B, 50);

 OnFwd(OUT_C, -50);

 Wait(500);

 while(Sensor(IN_2) < treshold){};

 Wait(200);

 while(Sensor(IN_2) > treshold){};

 Wait(100);

 Off(OUT_BC);

 follow();

//Wait for the lamp (into back)

 waitForTheLamp(117);

 follow();

 intoGarage();

 }

}

Garage

bool garageOpen;

bool rotated = false;

void ChangeGarageState(){

 if(garageOpen){

 RotateMotor(OUT_AC, -50, 100);

 }else{

 RotateMotor(OUT_AC, 50, 110);

 OnFwd(OUT_AC,10);

 }

 garageOpen = !garageOpen;

}

void Rotate(){

 if(rotated){

 OnFwd(OUT_B, 50); Wait(1500); while (Sensor(IN_4)<40); Off(OUT_B);

 }else{

 OnFwd(OUT_B, -50); Wait(1500); while (Sensor(IN_4)<40); Wait(100);

Off(OUT_B);

 }

 rotated = !rotated;

}

task main(){

 int val = -1;

 SetSensorColorRed(IN_4);

 while(true){

 ReceiveRemoteNumber(1,true,val);

 if(val != -1){

 if(val == 1){

 ChangeGarageState();

 }else if(val == 2){

 Rotate();

42

 }

 val = -1;

 }

 }

}

Traffic Lamp

task main(){

 int distance = 30; //Truck distance from the crossroad

 SetSensorLowspeed(S2);

 while(true){

 if(SensorUS(S2) < distance){

 SendResponseNumber(1,0);

 NumOut(0,0,0,true);

 }else{

 SendResponseNumber(1,1);

 NumOut(0,0,1,false);

 }

 NumOut(0,10,SensorUS(S2),false);

 Wait(300);

 }

}

SOURCE CODES IN NODE-BASED PROGRAMMING LANGUAGE (EV3-G)

Cargo Truck

Main

MyBlock – CalibrateSteering

43

Crane

Main

MyBlock – MoveTime

Swarm Truck System

Main – Master

Main – Slave

44

MyBlock – EngineControl

MyBlock – SetSlaveConstants

MyBlock – SetVariables

MyBlock – SlidingWindow

45

MyBlock – BlockAvg

MyBlock – SpeedMonitor

